BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

In the Matter of the Application of)	
PacifiCorp for Approval of an IRP)	Docket No. 03-035-14
Based Avoided Cost Methodology)	
For QF Projects Larger than 3 MW)	

Rebuttal Testimony of Abdinasir M. Abdulle Division of Public Utilities

September 8, 2005

1	Q:	Please state your name, business address, and employer for the record.
2	A:	My name is Abdinasir M. Abdulle; my business address is 160 East 300 South,
3		Salt Lake City, Utah 84114; I am employed by the Utah Division of Public
4		Utilities ("Division").
5	Q:	On whose behalf are you testifying in these proceedings?
6	A:	I am testifying on behalf of the Division.
7	Q:	Would you please summarize your educational background for the record?
8	A:	I have a Ph.D. in Economics from Utah State University. I have been employed
9		by the Division for about three years. I also am teaching at Weber State
10		University as an adjunct professor of economics.
11	Q:	What is the purpose of your testimony in these proceedings?
12	A:	The purpose of my testimony is to address the issues of capacity payments for
13		wind resources, wind integration cost, and wind pricing.
14		
15	Capac	ity Payment
16		
17	Q.	What did PacifiCorp assume about wind generation's contribution to the
18		planning reserve margin?
19	A.	Because of the intermittent nature of wind generation, in IRP 2003, the Company
20		assumed that wind generation contributes nothing to the planning reserve margin.
21		However, in IRP 2004, the Company revisited this assumption and determined
22		that wind generation contributes some of its capacity rating (20%) to meet
23		planning reserve margin.
24	Q.	How did the Company calculate what the capacity contribution of wind
25		resource should be?
26	A.	The Company used a methodology developed by Xcel Energy and National
27		Renewable Energy Laboratory (NREL) ¹ to determine the capacity contribution
28		for wind resources on its system. The details of this method are outlined in
29		Appendix J of the IRP 2004.

¹ Lehr, R.L., J. Nielson, S. Andrews, and M. Milligan. *Colorado Public Utility Commission's Xcel Wind Decision*. NREL/CP-500-30551, September 2001.

30		
31		
32	Q.	Do you think that the method used by the Company is appropriate?
33	A.	Yes. The method is generally appropriate. However, the data used to implement
34		the method is not sufficient. The Company used one month (July) of one year's
35		data from a confidential wind resource on the western control area and Foot Creek
36		on the eastern control area. This indicates that the 20% capacity contribution
37		calculated by the Company is based on a very limited data. It does not consider
38		diurnal and seasonal capacity factors, rather it focuses on summer peak capacity
39		factors. It also does not consider the impact of having wind resources on
40		diversified locations with varying wind patterns.
41	Q.	What is the position of the Division regarding capacity payment for wind
42		resources?
43	A.	The Division thinks that the assumption of 20% capacity contribution is a step in
44		the right direction and the Commission should adopt it as a starting point. This
45		may encourage wind resource development in the eastern control area,
46		particularly in Utah. However, the Division believes that more data is needed to
47		accurately calculate the effective capacity contribution of wind resources. The
48		Division recommends that the issue of capacity payment be reopened upon the
49		development of a minimum of 5 separate facilities. This will provide enough data
50		to refine the formula to more accurately calculate the capacity contribution of
51		wind resources. The results of the refined formula will be applied to new
52		contracts as well as to contracts already in place. However, there will be no
53		retroactive payments.
54		
55	Wind	Integration Cost
56		
57	Q.	What is wind integration cost?
58	А.	Wind integration cost is the added cost of integrating a wind resource into a
59		system. It is the sum of imbalance cost and the cost of incremental reserve
60		requirement. The imbalance cost is the additional operating costs incurred due to

61		variable output of wind generation whereas the cost of incremental reserve
62		requirement is the cost associated with the needed additional reserves to maintain
63		system reliability and security due to the variable output of wind generation.
64		These costs are over and above the avoided costs.
65	Q.	Does the Division have any concern in relation to how PacifiCorp calculated
66		the wind integration cost?
67	A.	Yes. The Division thinks that the procedure PacifiCorp used to calculate the
68		integration cost is reasonable except that PacifiCorp used unrealistic penetration
69		level of 1,000 MW. The wind penetration level in the eastern control area is
70		much less than 1,000 MW.
71	Q.	How would the use of a penetration level of 1,000 MW affect the wind
72		integration cost?
73	A.	According to a study conducted by Xcel Energy ² , integration costs increase with
74		the penetration level. The use of a penetration level of 1,000 MW would
75		overestimate the integration costs that could be reasonably expected in the eastern
76		control area in which there is much less than 1,000 MW of wind.
77		
78	Q.	What is the position of the Division in relation to wind integration cost?
79	A.	The Division does not have data suitable to study the functional relationship
80		between the penetration level and the integration cost. However, according to a
81		study conducted by Xcel Energy, there is an inverse relationship between the
82		integration cost and the penetration level.
83		
84		Based on a study conducted by Xcel Energy the integration costs range from
85		approximately \$2 to \$4. Since we do not know what the real integration cost is
86		for the eastern control area, the Division thinks that using the mid point of the
87		range suggested by the Xcel study is a reasonable starting point. Therefore, the
88		Division recommends that the Commission adopt an integration cost of \$3 per
89		MWh. However, the Division believes that, since the recommended \$3 per MWh

² DeMeo, E., et al. *Chatracterizing the Impact of Significant Wind Generation Facilities on Bulk Power System Operations Planning*. Xcel Energy – North case Study final report prepared for The Utility Wind Interest Group. May 2003.

90 is not based on real data, we need to revisit the issue of wind integration cost as 91 soon as we get 300 MW of wind or 10 new wind facilities, which ever comes 92 first. This will provide us with data suitable to effectively calculate what the 93 integration cost should be. 94 95 Wind Pricing 96 97 Q. Do you think that an approach in which the wind QF projects are paid a 98 minimum price based on the last contract entered into for non-QF winds by 99 **PacifiCorp would be appropriate?** 100 A. No. The Division does not believe in price floors. Using the price of the last 101 contract entered into for a non-QF wind project as a minimum price would not be 102 fair. This non-QF project had to intensely negotiate to get this price. For a new 103 OF wind project to even get this price it would have to demonstrate that it has the 104 exact same characteristics, including location, as the non-QF project. Given the 105 fact that wind projects developed earlier would get the best locations, it would be 106 difficult for a new a QF wind project to show that it could get a location with 107 equally preferable wind patterns. 108 109 In addition, in this proceeding, we are seeking a methodology that is appropriate 110 for wind pricing. Setting a price floor can not be deemed as a methodology that 111 can produce results that are fair for both the developer and the utility and 112 ultimately for the ratepayer for there is the potential for a wind QF to get the 113 minimum price when it does not have equally preferred characteristics as non-QF project. Therefore, this approach is one that seeks a specific result rather than a 114 115 methodology.

- 116 **Q.** Does that conclude your testimony?
- 117 A. Yes.